Dominant trackers generate a fixed-size rectangular region based on the previous prediction or initial bounding box as the model input, i.e., search region. While this manner leads to improved tracking efficiency, a fixed-size search region lacks flexibility and is likely to fail in cases, e.g., fast motion and distractor interference. Trackers tend to lose the target object due to the limited search region or be interfered by distractors due to excessive search region. In this work, we propose a novel tracking paradigm, called Search Region Regulation Tracking (SRRT), which applies a proposed search region regulator to estimate an optimal search region dynamically for every frame. To adapt the object's appearance variation during tracking, we further propose a locking-state determined updating strategy for reference frame updating. Our SRRT framework is very concise without fancy design, yet achieves evident improvements on the baselines and competitive results with other state-of-the-art trackers on seven challenging benchmarks. On the large-scale LaSOT benchmark, our SRRT improves SiamRPN++ and TransT with the absolute gains of 4.6% and 3.1% in terms of AUC.
翻译:根据先前的预测或初始边框作为模型输入,即搜索区域。虽然这一方式提高了跟踪效率,但固定规模的搜索区域缺乏灵活性,在快速运动和分散干扰等情况下可能失败。跟踪者往往由于搜索区域有限而失去目标对象,或者由于过度搜索区域而受到分散器的干扰。在这项工作中,我们提出了一个新的跟踪模式,称为搜索区域监管跟踪(SRRT),其中采用拟议的搜索区域监管者对每个框架动态地估计最佳搜索区域。为了在跟踪过程中调整物体的外观变异,我们进一步提议为更新参考框架制定锁定状态的更新战略。我们的SRRT框架非常简洁,没有花式设计,但与其他州级跟踪者相比,在七项具有挑战性的基准上明显改进了基线和竞争结果。关于大型的LaSOT基准,我们的SRRT改进了SamRPN++和TransT, 其绝对收益为4.6%和3.1%。