The rapid increase of the data scale in Internet of Vehicles (IoV) system paradigm, hews out new possibilities in boosting the service quality for the emerging applications through data sharing. Nevertheless, privacy concerns are major bottlenecks for data providers to share private data in traditional IoV networks. To this end, federated learning (FL) as an emerging learning paradigm, where data providers only send local model updates trained on their local raw data rather than upload any raw data, has been recently proposed to build a privacy-preserving data sharing models. Unfortunately, by analyzing on the differences of uploaded local model updates from data providers, private information can still be divulged, and performance of the system cannot be guaranteed when partial federated nodes executes malicious behavior. Additionally, traditional cloud-based FL poses challenges to the communication overhead with the rapid increase of terminal equipment in IoV system. All these issues inspire us to propose an autonomous blockchain empowered privacy-preserving FL framework in this paper, where the mobile edge computing (MEC) technology was naturally integrated in IoV system.
翻译:车辆互联网(IoV)系统模式的数据比例迅速提高,从而在通过数据共享提高新兴应用的服务质量方面出现了新的可能性;然而,隐私问题是数据提供者在传统IoV网络中分享私人数据的主要障碍;为此,作为新兴学习范例的联结学习(FL),数据提供者只发送当地原始数据培训的本地模型更新,而不是上传任何原始数据,最近有人提议建立一个隐私保护数据共享模式。 不幸的是,通过分析数据提供者上传的本地模型更新的差异,私人信息仍然可以泄露,当部分联合节点实施恶意行为时,该系统的性能不能得到保证。此外,传统的基于云的FL对通信间接费用提出了挑战,因为IoV系统终端设备迅速增加。 所有这些问题激励了我们在本文中提出一个自主的、具有保护隐私能力的链框架,移动边缘计算技术自然地融入了IoV系统。