Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.
翻译:联邦学习(FL)将合作情报带入没有集中培训数据的行业,以加速边缘计算水平上的工业4.0进程;FL解决企业希望利用数据情报的两难困境,解决安全关切;为进一步利用FL,加速工业互联网,利用FL的杠杆,从三个方面发展出现有FL成就:(1) 界定术语,并拟订FL的总体框架,以适应各种情况;(2) 讨论FL关于基本研究的最新技术,包括数据分割、隐私保护、模型优化、当地模式运输、个性化、激励机制、平台和工具以及基准;(3) 从经济角度讨论FL的影响;为吸引工业学术界和实践的更多注意,介绍了FL转换制造模式,提出了FL的未来研究方向,并可能直接应用于工业4.0领域。