Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at \url{https://github.com/SLAMPAI/generative-models-for-highres-solar-images}.
翻译:太阳活动是太阳系变化性的主要驱动因素,也是影响地球和近地空间的太空天气现象的关键来源。太阳动力学观测卫星的大量高分辨率极紫外线图像记录为太阳图像提供了前所未有的广泛而庞大数据集。在本研究中,我们利用这一全面的数据集,探讨目前最先进的生成模型在准确捕捉观测到的太阳活动状态的数据分布方面的能力。我们从基于StyleGAN的方法开始,揭示了这个模型系列在处理高分辨率样本的精细细节时存在的严重缺陷,这与训练自然面部图像时的情况相反。当转向基于扩散的生成模型系列时,我们发现精细细节生成方面有明显的改进。对于GAN系列,当转向使用多尺度鉴别器和预先训练的固定特征提取器的ProjectedGANs时,我们能够实现类似的精细尺度生成改进。我们进行消融研究,以阐明适当的精细尺度处理机制。利用超级计算机上的分布式训练,我们能够训练高达1024x1024分辨率的生成模型,产生高质量样本,无法区分人类专家的建议,我们进行评估。我们公开了在这项研究中使用的所有代码、模型和工作流程,网址为\url{https://github.com/SLAMPAI/generative-models-for-highres-solar-images}。