Uncertainty quantification (UQ) plays a critical role in verifying and validating forward integrated computational materials engineering (ICME) models. Among numerous ICME models, the crystal plasticity finite element method (CPFEM) is a powerful tool that enables one to assess microstructure-sensitive behaviors and thus, bridge material structure to performance. Nevertheless, given its nature of constitutive model form and the randomness of microstructures, CPFEM is exposed to both aleatory uncertainty (microstructural variability), as well as epistemic uncertainty (parametric and model-form error). Therefore, the observations are often corrupted by the microstructure-induced uncertainty, as well as the ICME approximation and numerical errors. In this work, we highlight several ongoing research topics in UQ, optimization, and machine learning applications for CPFEM to efficiently solve forward and inverse problems.


翻译:不确定性量化(UQ)在核查和验证前方综合计算材料工程模型(ICME)方面发挥着关键作用,在多种ICME模型中,晶体塑料定质元件法(CPFEM)是一个强有力的工具,使人们能够评估对微观结构敏感的行为,从而将材料结构与性能联系起来,然而,鉴于其构成模型形式的性质和微结构的随机性,CFEM既面临明显的不确定性(微观结构变异),也面临共认不确定性(参数和模型格式错误),因此,观测结果往往因微结构引起的不确定性以及ICME近似和数字错误而腐蚀。在这项工作中,我们突出强调了在UQ、优化和机器学习应用中的一些持续研究课题,以便CFEM有效解决前向和反向问题。

0
下载
关闭预览

相关内容

IEEE多媒体与博览会国际会议(ICME)每年有大约1,000名作者和500名参与者参加,这是由四个IEEE协会主办的联盟多媒体会议。它是一个促进交流多媒体最新进展的论坛从电路和系统,通信,计算机和信号处理社区的研究和开发角度来看的技术,系统和应用程序。 官网地址:http://dblp.uni-trier.de/db/conf/icmcs/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员