Bayesian optimization (BO) is a widely popular approach for the hyperparameter optimization (HPO) of machine learning algorithms. At its core, BO iteratively evaluates promising configurations until a user-defined budget, such as wall-clock time or number of iterations, is exhausted. While the final performance after tuning heavily depends on the provided budget, it is hard to pre-specify an optimal value in advance. In this work, we propose an effective and intuitive termination criterion for BO that automatically stops the procedure if it is sufficiently close to the global optima. Across an extensive range of real-world HPO problems, we show that our termination criterion achieves better test performance compared to existing baselines from the literature, such as stopping when the probability of improvement drops below a fixed threshold. We also provide evidence that these baselines are, compared to our method, highly sensitive to the choices of their own hyperparameters. Additionally, we find that overfitting might occur in the context of HPO, which is arguably an overlooked problem in the literature, and show that our termination criterion mitigates this phenomenon on both small and large datasets.
翻译:贝叶斯优化( BO) 是机器学习算法超参数优化( HPO) 的广受欢迎的方法。 在其核心部分, BO反复评估有希望的配置, 直到用户定义的预算( 如钟点时间或迭代次数)用完为止。 虽然调整后的最后性能严重依赖所提供的预算, 但很难预先确定最佳的预估价值 。 在这项工作中, 我们为 BO 提出了一个有效和直觉的终止标准, 如果程序与全球opima 足够接近, 就会自动停止程序 。 在一系列真实的 HPO 问题中, 我们显示我们的终止标准比文献中的现有基线实现更好的测试性能, 例如当改进概率降到固定阈值以下时停止 。 我们还提供证据表明, 这些基线与我们的方法相比, 对它们本身的超参数的选择非常敏感 。 此外, 我们发现, 在HPO 的背景下可能会发生过分的过度匹配, 这在文献中可以说是一个被忽视的问题, 并表明我们的终止标准会减轻小和大数据集上的现象 。