In this work, we develop new insights into the fundamental problem of convexity testing of real-valued functions over the domain $[n]$. Specifically, we present a nonadaptive algorithm that, given inputs $\eps \in (0,1), s \in \mathbb{N}$, and oracle access to a function, $\eps$-tests convexity in $O(\log (s)/\eps)$, where $s$ is an upper bound on the number of distinct discrete derivatives of the function. We also show that this bound is tight. Since $s \leq n$, our query complexity bound is at least as good as that of the optimal convexity tester (Ben Eliezer; ITCS 2019) with complexity $O(\frac{\log \eps n}{\eps})$; our bound is strictly better when $s = o(n)$. The main contribution of our work is to appropriately parameterize the complexity of convexity testing to circumvent the worst-case lower bound (Belovs et al.; SODA 2020) of $\Omega(\frac{\log (\eps n)}{\eps})$ expressed in terms of the input size and obtain a more efficient algorithm.
翻译:在这项工作中,我们开发了对域$[ $[ $] 上实际价值函数的共值测试这一根本问题的新洞察力。 具体地说,我们提出了一个非适应性算法,考虑到投入 $\ eps e in (0,1, s\ in\ mathb{N}$, 以及进入一个功能的甲骨文, $\ eps e- testxity conxity $( log)/\ eps) $( log) /\ eps) $( 美元), 美元是该函数不同离散衍生物数量的上限。 我们还表明这一约束是紧的。 由于 $\leq n$, 我们的查询复杂性至少和最理想的共性测试器( Ben Elijezer; ITS 2019) 一样好,复杂, $( granc_ log\ eps nepps neps) $(n) lax est- case a leg- clasfor- develop laxyal develop lax) (Bas) (Bal) a lax) lax) lax n.