The Set Packing problem is, given a collection of sets $\mathcal{S}$ over a ground set $\mathcal{U}$, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given $r \in {\mathbb N}$, is there a collection $ \mathcal{S}' \subseteq \mathcal{S}: |\mathcal{S}'| = r$ such that the sets in $\mathcal{S}'$ are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless $\mathsf{W[1] = FPT}$, and, in fact, an "enumeration" running time of $|\mathcal{S}|^{\Omega(r)}$ is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input $(\mathcal{U},\mathcal{S})$ is "compact" if $|\mathcal{U}| = f(r)\cdot\Theta(\textsf{poly}( \log |\mathcal{S}|))$, for some $f(r) \ge r$. In the Compact Set Packing problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When $|\mathcal{U}| = f(r)\cdot o(\log |\mathcal{S}|)$, PSP is in $\textsf{FPT}$, while for $|\mathcal{U}| = r\cdot\Theta(\log (|\mathcal{S}|))$, the problem is $W[1]$-hard; moreover, assuming ETH, Compact PSP does not even admit $|\mathcal{S}|^{o(r/\log r)}$ time algorithm.
翻译:设置包装问题在于, 以每立每立每立每立每立每立每立每立每立每立每立每立每立每美元, 以寻找每立每立每立每立每立每立每立每美元的最大集合。 问题是在各种计算制度中广泛研究的最根本性的 NP- 硬优化问题之一 。 这项工作的重点是参数复杂性, 参数化的成套包装问题 (PSP): 美元( 美元) 以每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每美元)美元, 美元( 美元) 美元, 除非每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立每立