We prove a new Bernstein type inequality in $L^p$ spaces associated with the tangential derivatives on the boundary of a general compact $C^2$-domain. We give two applications: Marcinkiewicz type inequality for discretization of $L^p$ norm and positive cubature formula. Both results are optimal in the sense that the number of function samples used has the order of the dimension of the corresponding space of algebraic polynomials.


翻译:我们证明伯恩斯泰因式的不平等是新的,与一般契约$C$2$-域边界上的相近衍生物相关,以美元为单位。我们给出了两种应用:马克辛基维茨式的不平等(Marcinkiewicz型),以美元为单位分解标准值和正的幼稚公式。 这两种结果都是最佳的,因为所使用的功能样本数量与代数多元体相应空间的大小相近。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月12日
VIP会员
相关资讯
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员