A cyclic proof system allows us to perform inductive reasoning without explicit inductions. We propose a cyclic proof system for HFLN, which is a higher-order predicate logic with natural numbers and alternating fixed-points. Ours is the first cyclic proof system for a higher-order logic, to our knowledge. Due to the presence of higher-order predicates and alternating fixed-points, our cyclic proof system requires a more delicate global condition on cyclic proofs than the original system of Brotherston and Simpson. We prove the decidability of checking the global condition and soundness of this system, and also prove a restricted form of standard completeness for an infinitary variant of our cyclic proof system. A potential application of our cyclic proof system is semi-automated verification of higher-order programs, based on Kobayashi et al.'s recent work on reductions from program verification to HFLN validity checking.
翻译:自行车校准系统允许我们在没有明确感应的情况下进行感应推理。 我们提议HFLN的自行车校验系统,这是一个高阶的上游逻辑,有自然数字和交替固定点。 据我们所知,我们是第一个具有更高阶逻辑的自行车校准系统。由于存在高阶的上游和交替固定点,我们的自行车校准系统要求比Brotherton和Simpson的原系统更微妙的自行车证全球条件。我们证明,检查这个系统的全球状况和健全性是衰败的,也证明我们自行车校准系统一个无限变异的标准完整性形式是有限的。我们自行车校准系统的潜在应用是,根据Kobayashi等人最近关于从程序核查到HFLN有效性检查的削减工作,对高阶程序进行半自动核查。