Visualization, as a vibrant field for researchers, practitioners, and higher educational institutions, is growing and evolving very rapidly. Tremendous progress has been made since 1987, the year often cited as the beginning of data visualization as a distinct field. As such, the number of visualization resources and the demand for those resources are increasing at a very fast pace. We present a collection of open visualization resources for all those with an interest in interactive data visualization and visual analytics. Because the number of resources is so large, we focus on collections of resources, of which there are already very many ranging from literature collections to collections of practitioner resources. We develop a novel classification of visualization resource collections based on the resource type, e.g. literature-based, web-based, etc. The result is a helpful overview and details-on-demand of many useful resources. The collection offers a valuable jump-start for those seeking out data visualization resources from all backgrounds spanning from beginners such as students to teachers, practitioners, and researchers wishing to create their own advanced or novel visual designs.


翻译:作为研究人员、从业者和高等教育机构的一个充满活力的领域,可视化正在增长,并迅速发展。1987年以来取得了巨大的进步,1987年经常被称作数据可视化的开端,因此,视觉化资源的数量和对这些资源的需求正在以非常快的速度增长。我们为所有那些对交互式数据可视化和视觉分析感兴趣的人提供了开放的可视化资源汇编。由于资源数量如此之多,我们把重点放在资源收集上,从文献收集到从业者资源的收集,已经有许多资源。我们根据资源类型(例如基于文献的、基于网络的等),对可视化资源收藏进行了新的分类。结果对许多有用资源的需求提供了有益的概览和细节。收集工作为从各种背景(如学生到教师、从业者、以及希望创造自己先进或新视觉设计的研究者)寻求数据可视化资源的人提供了宝贵的跳动开端。

0
下载
关闭预览

相关内容

数据可视化是关于数据之视觉表现形式的研究。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
19+阅读 · 2019年4月5日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员