Most modeling approaches lie in either of the two categories: physics-based or data-driven. Recently, a third approach which is a combination of these deterministic and statistical models is emerging for scientific applications. To leverage these developments, our aim in this perspective paper is centered around exploring numerous principle concepts to address the challenges of (i) trustworthiness and generalizability in developing data-driven models to shed light on understanding the fundamental trade-offs in their accuracy and efficiency, and (ii) seamless integration of interface learning and multifidelity coupling approaches that transfer and represent information between different entities, particularly when different scales are governed by different physics, each operating on a different level of abstraction. Addressing these challenges could enable the revolution of digital twin technologies for scientific and engineering applications.
翻译:多数建模方法都存在于这两类中的任何一类:以物理学为基础的模型或以数据为驱动的模型。最近,正在出现第三种方法,即这些确定和统计模型的结合,用于科学应用。为了利用这些发展动态,我们在本观点文件中的目标集中在探讨许多原则概念,以应对以下挑战:(一) 以数据为驱动模型的可信赖性和可概括性,以便了解数据驱动模型在准确性和效率方面的基本取舍,以及(二) 将不同实体之间转让和代表信息的界面学习和多端组合方法完美地结合起来,特别是当不同尺度由不同物理学管理时,每个尺度都以不同程度的抽象方式运作。应对这些挑战可以使数字双技术在科学和工程应用方面的革命成为可能。