We study the locations of complex zeroes of independence polynomials of bounded degree hypergraphs. For graphs, this is a long-studied subject with applications to statistical physics, algorithms, and combinatorics. Results on zero-free regions for bounded-degree graphs include Shearer's result on the optimal zero-free disk, along with several recent results on other zero-free regions. Much less is known for hypergraphs. We make some steps towards an understanding of zero-free regions for bounded-degree hypergaphs by proving that all hypergraphs of maximum degree $\Delta$ have a zero-free disk almost as large as the optimal disk for graphs of maximum degree $\Delta$ established by Shearer (of radius $\sim 1/(e \Delta)$). Up to logarithmic factors in $\Delta$ this is optimal, even for hypergraphs with all edge-sizes strictly greater than $2$. We conjecture that for $k\ge 3$, $k$-uniform linear hypergraphs have a much larger zero-free disk of radius $\Omega(\Delta^{- \frac{1}{k-1}} )$. We establish this in the case of linear hypertrees.
翻译:我们研究的是独立多度高测的复杂零点点位置。 对于图表来说,这是一个长期研究的主题,应用统计物理、算法和组合法。 约束度图形的零无区域结果包括毛耳机在最佳零光盘上的结果, 以及其他零无区域的最新结果。 高测远不为人知。 我们采取一些步骤, 以了解约束度超高古体的零无区域。 我们通过证明所有最高度高光谱的$\ Delta$的零度磁盘几乎与Shearer(半径$sim 1/(e\Delta)$建立的最高度图形最佳磁盘一样大。 最高为$\Delta$(e\Delta), 这是最佳的逻辑系数, 即使是所有边缘大小都严格大于$2美元的超光谱区域。 我们的预测是3kge, $k$$-ung$-unta$_ 直径1\\\\ we airmaxal peral dealalal- cirmaxyal ex.