Shapley value has recently become a popular way to explain the predictions of complex and simple machine learning models. This paper is discusses the factors that influence Shapley value. In particular, we explore the relationship between the distribution of a feature and its Shapley value. We extend our analysis by discussing the difference that arises in Shapley explanation for different predicted outcomes from the same model. Our assessment is that Shapley value for particular feature not only depends on its expected mean but on other moments as well such as variance and there are disagreements for baseline prediction, disagreements for signs and most important feature for different outcomes such as probability, log odds, and binary decision generated using same linear probability model (logit/probit). These disagreements not only stay for local explainability but also affect the global feature importance. We conclude that there is no unique Shapley explanation for a given model. It varies with model outcome (Probability/Log-odds/binary decision such as accept vs reject) and hence model application.


翻译:Shapley值最近成为解释复杂和简单的机器学习模型预测的流行方式。 本文讨论影响Shapley值的因素。 特别是, 我们探讨一个特性分布及其形状值之间的关系。 我们通过讨论Shapley解释同一模型不同预测结果时产生的差异来扩展我们的分析。 我们的评估是, 特定特性的Shapley值不仅取决于其预期平均值,而且取决于其他时刻,例如差异, 基线预测存在分歧, 迹象和不同结果的最重要特征, 如概率、 日志概率和二进制决定使用相同的线性概率模型( logit/ probit) 生成。 这些分歧不仅停留在局部解释性上, 而且还影响全球特性的重要性。 我们的结论是, 特定模型没有独特的形状解释。 它与模型结果( 概率/ Log-odds/ binary决定, 如接受 vs 拒绝) 不同, 并因此与模型应用不同 。

1
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2021年7月11日
专知会员服务
52+阅读 · 2020年11月17日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
14+阅读 · 2020年12月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2021年7月11日
专知会员服务
52+阅读 · 2020年11月17日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员