Conformal inference has played a pivotal role in providing uncertainty quantification for black-box ML prediction algorithms with finite sample guarantees. Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level. In practical applications, one might want to update the miscoverage level after computing the prediction set. For example, in the context of binary classification, the analyst might start with a $95\%$ prediction sets and see that most prediction sets contain all outcome classes. Prediction sets with both classes being undesirable, the analyst might desire to consider, say $80\%$ prediction set. Construction of prediction sets that guarantee coverage with data-dependent miscoverage level can be considered as a post-selection inference problem. In this work, we develop uniform conformal inference with finite sample prediction guarantee with arbitrary data-dependent miscoverage levels using distribution-free confidence bands for distribution functions. This allows practitioners to trade freely coverage probability for the quality of the prediction set by any criterion of their choice (say size of prediction set) while maintaining the finite sample guarantees similar to traditional conformal inference.


翻译:---- 在黑盒机器学习预测算法提供有限样本保证的不确定性量化方面,一致性推断发挥了关键作用。传统上,一致性预测推断需要数据独立的误覆盖水平的规定。在实际应用中,人们可能希望在计算预测集之后更新误覆盖水平。例如,在二元分类的情况下,分析员可能开始使用 95% 预测集,并发现大多数预测集都包含了所有结果类别。由于两个类别都不理想,分析师可能希望考虑例如 80% 预测集。构建在任何自己选择的标准(例如预测集大小)下保证数据相关误覆盖水平的预测集,可以被看作是后选择推断问题。在本文中,我们使用分布自由的置信带来开发具有任意数据相关误覆盖水平的统一一致推断,以用于有限样本预测保证。这使得从业者可以在维持类似于传统一致推断的有限样本保证的同时,根据自己选择的任何标准(例如预测集大小)自由交换覆盖概率和预测集质量。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
已删除
将门创投
10+阅读 · 2018年5月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
已删除
将门创投
10+阅读 · 2018年5月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员