项目名称: 基于不确定进化优化的含随机数软件测试数据自动生成理论与方法

项目编号: No.61203304

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 姚香娟

作者单位: 中国矿业大学

项目金额: 24万元

中文摘要: 软件测试自动化可以提高软件测试的效率和质量,自动生成测试数据是软件测试自动化的核心。对于内部含有随机数等不确定参数的复杂软件,传统的测试数据生成方法往往难以奏效。本项目针对含随机数被测软件,研究其基于进化优化的测试数据生成理论与方法,通过研究,拟给出含随机数软件可靠性测试充分性准则,为该类软件的测试提供理论依据和方法;建立含随机数软件测试数据生成问题的数学模型,把测试数据生成问题转化为不确定优化问题;提出相应的进化优化求解方法,利用多种群并行进化的方式,提高含随机数软件测试数据生成的效率;开发测试数据生成原型系统,并应用到实际的含随机数软件测试中。本项目是自动化、应用数学与计算机等学科有机交叉、新颖且富有挑战性的研究方向,产生的研究成果将推进含随机数软件的自动测试理论,并可广泛应用到军工、游戏、科学计算等领域软件的测试。因此,具有重要的理论意义和实用价值。

中文关键词: 进化算法;不确定优化;软件自动测试;测试数据生成;随机数

英文摘要: Software test automation can improve the efficiency and quality of software testing, and the core of software test automation is automatically generating test data. For software with uncertainty parameters, such as random numbers, traditional methods of generating test data often lose their effectiveness. This project mainly researches the theory and methods of generating test data based on evolutionary optimization for software with random numbers. By research, we plan to give the adequacy criteria of reliability testing for software with random numbers, in order to provide theoretical basis and method for the test of software with random numbers; establish the mathematical model of generating test data for software with random numbers, so that the problem of generating test data can be transformed to an uncertain optimization one; propose corresponding evolutionary optimization solutions, and enhance the efficiency of generating test data by means of parallel evolution of multiple populations; develop the prototype system of generating test data, and apply it to practical software testing. This project is an innovative and challenging direction by integrating the knowledge of computer, applied mathematics and automation. The expected results will greatly promote the automatic testing theory of software with ra

英文关键词: Evolutionary Algorithm;Uncertain Optimization;Automatic Software Testing;Test Data Generation;Random Number

成为VIP会员查看完整内容
0

相关内容

【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
【博士论文】机器学习中的标记增强理论 与应用研究
专知会员服务
29+阅读 · 2021年12月3日
专知会员服务
81+阅读 · 2021年10月15日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
58+阅读 · 2021年5月4日
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
84+阅读 · 2020年12月11日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
【博士论文】开放环境下的度量学习研究
专知
7+阅读 · 2021年12月4日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
【教程】如何使用深度学习为照片自动生成文本描述?
GAN生成式对抗网络
20+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Towards Fine-grained Causal Reasoning and QA
Arxiv
0+阅读 · 2022年4月15日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
110+阅读 · 2020年2月5日
小贴士
相关VIP内容
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
【博士论文】机器学习中的标记增强理论 与应用研究
专知会员服务
29+阅读 · 2021年12月3日
专知会员服务
81+阅读 · 2021年10月15日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
58+阅读 · 2021年5月4日
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
84+阅读 · 2020年12月11日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
【博士论文】开放环境下的度量学习研究
专知
7+阅读 · 2021年12月4日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
【教程】如何使用深度学习为照片自动生成文本描述?
GAN生成式对抗网络
20+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员