Predicting the success of startup companies is of great importance for both startup companies and investors. It is difficult due to the lack of available data and appropriate general methods. With data platforms like Crunchbase aggregating the information of startup companies, it is possible to predict with machine learning algorithms. Existing research suffers from the data sparsity problem as most early-stage startup companies do not have much data available to the public. We try to leverage the recent algorithms to solve this problem. We investigate several machine learning algorithms with a large dataset from Crunchbase. The results suggest that LightGBM and XGBoost perform best and achieve 53.03% and 52.96% F1 scores. We interpret the predictions from the perspective of feature contribution. We construct portfolios based on the models and achieve high success rates. These findings have substantial implications on how machine learning methods can help startup companies and investors.
翻译:预测开办公司的成功对于新开办公司和投资者都非常重要。 由于缺乏可用数据和适当的通用方法,很难预测新开办公司的成功。 由于Crunchbase等数据平台汇集了新开办公司的信息,因此有可能用机器学习算法进行预测。 现有研究存在数据宽度问题, 因为大多数早期开办公司没有向公众提供大量数据。 我们试图利用最近的算法解决这个问题。 我们用Crunchbase的大型数据集调查了几套机器学习算法。 结果表明, LightGBM 和 XGBoost 的成绩最好, 并取得了53.03%和52.96%的F1分。 我们从特征贡献的角度来解读这些预测。 我们根据模型构建组合,并实现高成功率。 这些发现对机器学习方法如何帮助新开办公司和投资者产生了重大影响。