Predicting the success of startup companies is of great importance for both startup companies and investors. It is difficult due to the lack of available data and appropriate general methods. With data platforms like Crunchbase aggregating the information of startup companies, it is possible to predict with machine learning algorithms. Existing research suffers from the data sparsity problem as most early-stage startup companies do not have much data available to the public. We try to leverage the recent algorithms to solve this problem. We investigate several machine learning algorithms with a large dataset from Crunchbase. The results suggest that LightGBM and XGBoost perform best and achieve 53.03% and 52.96% F1 scores. We interpret the predictions from the perspective of feature contribution. We construct portfolios based on the models and achieve high success rates. These findings have substantial implications on how machine learning methods can help startup companies and investors.


翻译:预测开办公司的成功对于新开办公司和投资者都非常重要。 由于缺乏可用数据和适当的通用方法,很难预测新开办公司的成功。 由于Crunchbase等数据平台汇集了新开办公司的信息,因此有可能用机器学习算法进行预测。 现有研究存在数据宽度问题, 因为大多数早期开办公司没有向公众提供大量数据。 我们试图利用最近的算法解决这个问题。 我们用Crunchbase的大型数据集调查了几套机器学习算法。 结果表明, LightGBM 和 XGBoost 的成绩最好, 并取得了53.03%和52.96%的F1分。 我们从特征贡献的角度来解读这些预测。 我们根据模型构建组合,并实现高成功率。 这些发现对机器学习方法如何帮助新开办公司和投资者产生了重大影响。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年9月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
49+阅读 · 2021年5月9日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
4+阅读 · 2018年4月11日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员