Visual-inertial odometry (VIO) is an important technology for autonomous robots with power and payload constraints. In this paper, we propose a novel approach for VIO with stereo cameras which integrates and calibrates the velocity-control based kinematic motion model of wheeled mobile robots online. Including such a motion model can help to improve the accuracy of VIO. Compared to several previous approaches proposed to integrate wheel odometer measurements for this purpose, our method does not require wheel encoders and can be applied when the robot motion can be modeled with velocity-control based kinematic motion model. We use radial basis function (RBF) kernels to compensate for the time delay and deviations between control commands and actual robot motion. The motion model is calibrated online by the VIO system and can be used as a forward model for motion control and planning. We evaluate our approach with data obtained in variously sized indoor environments, demonstrate improvements over a pure VIO method, and evaluate the prediction accuracy of the online calibrated model.
翻译:视觉神经测量(VIO)是具有功率和有效载荷限制的自主机器人的重要技术。在本文中,我们建议对具有立体摄像机的ViO采用新颖的方法,在网上整合和校准基于速度控制的机动机器人运动模型。包括这种运动模型可以帮助提高VIO的准确性。与先前为为此而提议采用的若干整合轮式温度计测量的方法相比,我们的方法不需要轮式电解仪,可以在机器人运动能够以基于速度控制的动态运动模型建模时加以应用。我们使用无线电基函数(RBF)来补偿控制指令和实际机器人运动之间的时间延迟和偏差。该运动模型由VIO系统在线校准,可以用作运动控制和规划的前瞻性模型。我们用在各种规模的室内环境中获得的数据来评估我们的方法,展示对纯度VIO方法的改进,并评价在线校准模型的预测精度。