Pedestrian dead reckoning is a challenging task due to the low-cost inertial sensor error accumulation. Recent research has shown that deep learning methods can achieve impressive performance in handling this issue. In this letter, we propose inertial odometry using a deep learning-based velocity estimation method. The deep neural network based on Res2Net modules and two convolutional block attention modules is leveraged to restore the potential connection between the horizontal velocity vector and raw inertial data from a smartphone. Our network is trained using only fifty percent of the public inertial odometry dataset (RoNIN) data. Then, it is validated on the RoNIN testing dataset and another public inertial odometry dataset (OXIOD). Compared with the traditional step-length and heading system-based algorithm, our approach decreases the absolute translation error (ATE) by 76%-86%. In addition, compared with the state-of-the-art deep learning method (RoNIN), our method improves its ATE by 6%-31.4%.
翻译:由于低成本惯性传感器错误积累,Pedestrian死亡计数是一项具有挑战性的任务。 最近的研究显示,深层学习方法在处理这一问题时能够取得令人印象深刻的性能。 在本信中,我们提议使用深层次学习速度估计方法来进行惯性odoric 测量。基于Res2Net模块和两个进化区块关注模块的深神经网络被利用来恢复水平速度矢量与智能手机原始惯性数据之间的潜在联系。我们的网络仅使用50%的公开惯性odoricat 数据集(RONIN)进行了培训。然后,在 RoNIN 测试数据集和另一个公共惯性odoricat 数据集(OXIOD)上进行了验证。与传统的职长和前导系统算法相比,我们的方法将绝对翻译错误(ATE)减少76%-86%。此外,与最先进的深层学习方法(RoNIN)相比,我们的方法将其ATE改进了6%-31.4。