We study one-sided matching problems where $n$ agents have preferences over $m$ objects and each of them need to be assigned to at most one object. Most work on such problems assume that the agents only have ordinal preferences and usually the goal in them is to compute a matching that satisfies some notion of economic efficiency. However, in reality, agents may have some preference intensities or cardinal utilities that, e.g., indicate that they like an an object much more than another object, and not taking these into account can result in a loss in welfare. While one way to potentially account for these is to directly ask the agents for this information, such an elicitation process is cognitively demanding. Therefore, we focus on learning more about their cardinal preferences using simple threshold queries which ask an agent if they value an object greater than a certain value, and use this in turn to come up with algorithms that produce a matching that, for a particular economic notion $X$, satisfies $X$ and also achieves a good approximation to the optimal welfare among all matchings that satisfy $X$. We focus on several notions of economic efficiency, and look at both adaptive and non-adaptive algorithms. Overall, our results show how one can improve welfare by even non-adaptively asking the agents for just one bit of extra information per object.


翻译:我们研究的是一面匹配问题,即美元代理人的偏好大于百万美元对象,而每个代理人都需要分配到最多一个对象。关于这些问题的多数工作假设,代理人只具有正统偏好,通常目的是计算出符合某种经济效率概念的匹配。然而,实际上,代理人可能有一些偏好强度或基本公用事业,例如,表明他们喜欢一个对象比另一个对象要多得多,而没有考虑到这些好处可能会造成福利损失。尽管可能考虑这些好处的一个方法就是直接要求代理人提供这一信息,但这种启发过程在认知上要求很高。因此,我们侧重于更多地了解他们的主要偏好,使用简单的门槛查询,即询问代理人是否认为一个对象的价值大于一定价值,然后用这种方法得出一种匹配的算法,例如,他们喜欢一个对象比另一个对象更像另一个对象,即X美元,能够满足美元,并且能够使所有符合X美元的最佳福利。我们侧重于几个经济效率概念的概念,甚至看一种不适应性、不适应性、不适应性、不适应性、不适应性、不适应性、不要求一种全面、不适应性的方法。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月13日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员