The lack of cycling infrastructure in urban environments hinders the adoption of cycling as a viable mode for commuting, despite the evident benefits of (e-)bikes as sustainable, efficient, and health-promoting transportation modes. Bike network planning is a tedious process, relying on heuristic computational methods that frequently overlook the broader implications of introducing new cycling infrastructure, in particular the necessity to repurpose car lanes. In this work, we call for optimizing the trade-off between bike and car networks, effectively pushing for Pareto optimality. This shift in perspective gives rise to a novel linear programming formulation towards optimal bike network allocation. Our experiments, conducted using both real-world and synthetic data, testify the effectiveness and superiority of this optimization approach compared to heuristic methods. In particular, the framework provides stakeholders with a range of lane reallocation scenarios, illustrating potential bike network enhancements and their implications for car infrastructure. Crucially, our approach is adaptable to various bikeability and car accessibility evaluation criteria, making our tool a highly flexible and scalable resource for urban planning. This paper presents an advanced decision-support framework that can significantly aid urban planners in making informed decisions on cycling infrastructure development.
翻译:暂无翻译