Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems. Despite its success, certain complex tasks remain challenging to be addressed solely with a single model and algorithm. In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity. ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities. In this study, we present a comprehensive survey on ERL to provide readers with an overview of recent advances and challenges in the field. First, we introduce the background and motivation for ERL. Second, we analyze in detail the strategies that have been successfully applied in ERL, including model averaging, model selection, and model combination. Subsequently, we summarize the datasets and analyze algorithms used in relevant studies. Finally, we outline several open questions and discuss future research directions of ERL. By providing a guide for future scientific research and engineering applications, this survey contributes to the advancement of ERL.
翻译:强化学习 (RL) 已经成为了解决各种科学和应用问题的高效技术。尽管它很成功,但是有些复杂的任务仍然很难仅通过单一的模型和算法来解决。针对这一问题,集成强化学习 (ERL) 成为一种很有前途的方法,它结合了 RL 和集成学习 (EL) 的优点,并得到了广泛的关注。ERL 利用多种模型或训练算法来全面地探索问题空间,并具有强大的泛化能力。在本研究中,我们提供了一份集成强化学习的综述,以便为读者提供该领域的最新进展和挑战的概述。首先,我们介绍了 ERL 的背景和动机。其次,我们对已成功应用于 ERL 的策略进行了详细分析,包括模型平均、模型选择和模型组合。随后,我们总结了相关研究中使用的数据集和算法进行了分析。最后,我们概述了几个未解决问题,并讨论了 ERL 的未来研究方向。通过为未来的科学研究和工程应用提供指南,这份综述有助于 ERL 的进一步发展。