Self-supervised learning (SSL) has proven vital in speech and audio-related applications. The paradigm trains a general model on unlabeled data that can later be used to solve specific downstream tasks. This type of model is costly to train as it requires manipulating long input sequences that can only be handled by powerful centralised servers. Surprisingly, despite many attempts to increase training efficiency through model compression, the effects of truncating input sequence lengths to reduce computation have not been studied. In this paper, we provide the first empirical study of SSL pre-training for different specified sequence lengths and link this to various downstream tasks. We find that training on short sequences can dramatically reduce resource costs while retaining a satisfactory performance for all tasks. This simple one-line change would promote the migration of SSL training from data centres to user-end edge devices for more realistic and personalised applications.
翻译:自我监督的学习(SSL)已证明在语言和音频相关应用中至关重要。 范式在未贴标签的数据上培养一个通用模型, 供日后用于解决具体的下游任务。 这种模式在培训方面成本很高, 因为它需要操纵只能由强大的中央化服务器处理的长输入序列。 令人惊讶的是, 尽管多次尝试通过模型压缩来提高培训效率, 但没有研究缩短输入序列长度以减少计算的效果 。 在本文中, 我们首次对用于不同特定序列长度的 SSL 预培训进行了经验性研究, 并将之与各种下游任务联系起来 。 我们发现, 短序列培训可以大幅降低资源成本, 同时保留所有任务令人满意的性能 。 这一简单的一行变化将促进将 SSL 培训从数据中心转移到用户端边缘设备, 以获得更现实和个性化的应用 。