We present ASYMP, a distributed graph processing system developed for the timely analysis of graphs with trillions of edges. ASYMP has several distinguishing features including a robust fault tolerance mechanism, a lockless architecture which scales seamlessly to thousands of machines, and efficient data access patterns to reduce per-machine overhead. ASYMP is used to analyze the largest graphs at Google, and the graphs we consider in our empirical evaluation here are, to the best of our knowledge, the largest considered in the literature. Our experimental results show that compared to previous graph processing frameworks at Google, ASYMP can scale to larger graphs, operate on more crowded clusters, and complete real-world graph mining analytic tasks faster. First, we evaluate the speed of ASYMP, where we show that across a diverse selection of graphs, it runs Connected Component 3-50x faster than state of the art implementations in MapReduce and Pregel. Then we demonstrate the scalability and parallelism of this framework: first by showing that the running time increases linearly by increasing the size of the graphs (without changing the number of machines), and then by showing the gains in running time while increasing the number of machines. Finally, we demonstrate the fault-tolerance properties for the framework, showing that inducing 50% of our machines to fail increases the running time by only 41%.


翻译:我们展示了ASYMP(ASYMP),这是一个为及时分析具有数万亿边缘的图表而开发的分布式图表处理系统。ASYMP(ASYMP)具有几个显著的特征,包括一个强大的容积机制,一个无缝结构,一个无缝结构,无缝的无缝结构,以及有效的数据访问模式,以减少每台机器的间接费用。ASYMP(AsyMP)用来分析谷歌最大的图表,而我们在这里的经验评估中考虑的图表,在我们最了解的意义上,是文献中考虑最多的。我们的实验结果显示,与Google(Goog)以前的图表处理框架相比,ASYMP(ASYMP)可以缩放成更大的图表,在更拥挤的集群上操作,完成真实世界图解析任务。首先,我们评估了ASYMP(ASYMP)的速度,我们从不同选择的图表中显示,它连接的3-50x(3-50x)比在MapReddudududu和Pregel(Pregel)的艺术执行状况要快。然后我们展示这个框架的可缩缩缩缩缩和平行框架的大小。我们只能显示,最后显示50机器的失败。最后显示我们运行的磁力框架。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
7+阅读 · 2019年5月31日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员