In this paper, we study the problem of evaluating the addition of elements to a set. This problem is difficult, because it can, in the general case, not be reduced to unconditional preferences between the choices. Therefore, we model preferences based on the context of the decision. We discuss and compare two different Siamese network architectures for this task: a twin network that compares the two sets resulting after the addition, and a triplet network that models the contribution of each candidate to the existing set. We evaluate the two settings on a real-world task; learning human card preferences for deck building in the collectible card game Magic: The Gathering. We show that the triplet approach achieves a better result than the twin network and that both outperform previous results on this task.


翻译:在本文中,我们研究了对一组要素附加内容的评估问题。 这个问题是困难的, 因为在一般情况下, 它不能被简化为对两种选择的无条件偏好。 因此, 我们根据决定的背景来模拟偏好。 我们讨论并比较了用于这项任务的两种不同的暹罗网络结构: 将添加后产生的两组元素作比较的双子网络, 以及将每个候选人对现有组的贡献做成模型的三重网络。 我们评估了现实世界任务的两个设置; 在收集卡游戏“ 魔术: 聚会” 中, 学习人牌对甲板建筑的偏好。 我们证明三重方法比双对齐网络取得了更好的结果, 并且两者都比先前在这项工作上取得的结果要好。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
4+阅读 · 2019年4月17日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员