Iterative detection and decoding (IDD) is known to achieve near-capacity performance in multi-antenna wireless systems. We propose deep-unfolded interleaved detection and decoding (DUIDD), a new paradigm that reduces the complexity of IDD while achieving even lower error rates. DUIDD interleaves the inner stages of the data detector and channel decoder, which expedites convergence and reduces complexity. Furthermore, DUIDD applies deep unfolding to automatically optimize algorithmic hyperparameters, soft-information exchange, message damping, and state forwarding. We demonstrate the efficacy of DUIDD using NVIDIA's Sionna link-level simulator in a 5G-near multi-user MIMO-OFDM wireless system with a novel low-complexity soft-input soft-output data detector, an optimized low-density parity-check decoder, and channel vectors from a commercial ray-tracer. Our results show that DUIDD outperforms classical IDD both in terms of block error rate and computational complexity.
翻译:已知迭代检测和解码(IDD)可实现多antenna无线系统中的近容量性能。我们建议采用深度未穿透的间断检测和解码(DUIDD),这是在降低误差率的同时降低IDD复杂性的新模式。DUIDD将数据检测器和解码器的内部阶段分离出来,加速并降低复杂性。此外,DUIDD将深度应用到自动优化超参数算法、软信息交流、信息阻断和状态传输。我们用5G-near多用户IMO-OFDM无线系统中的Sionna链接级模拟器展示DUIDD的功效,该模拟器有新型的低复合软投入软输出数据探测器、优化的低密度对等检查解码器,以及商业射线-tracer的传控器。我们的结果表明,DUIDD在块误差率和计算复杂度方面都超越了典型的IDD。