Cardiac Magnetic Resonance (CMR) is the most effective tool for the assessment and diagnosis of a heart condition, which malfunction is the world's leading cause of death. Software tools leveraging Artificial Intelligence already enhance radiologists and cardiologists in heart condition assessment but their lack of transparency is a problem. This project investigates if it is possible to discover concepts representative for different cardiac conditions from the deep network trained to segment crdiac structures: Left Ventricle (LV), Right Ventricle (RV) and Myocardium (MYO), using explainability methods that enhances classification system by providing the score-based values of qualitative concepts, along with the key performance metrics. With introduction of a need of explanations in GDPR explainability of AI systems is necessary. This study applies Discovering and Testing with Concept Activation Vectors (D-TCAV), an interpretaibilty method to extract underlying features important for cardiac disease diagnosis from MRI data. The method provides a quantitative notion of concept importance for disease classified. In previous studies, the base method is applied to the classification of cardiac disease and provides clinically meaningful explanations for the predictions of a black-box deep learning classifier. This study applies a method extending TCAV with a Discovering phase (D-TCAV) to cardiac MRI analysis. The advantage of the D-TCAV method over the base method is that it is user-independent. The contribution of this study is a novel application of the explainability method D-TCAV for cardiac MRI anlysis. D-TCAV provides a shorter pre-processing time for clinicians than the base method.


翻译:心脏磁共振(CMR)是评估和诊断心脏状况的最有效工具,心脏状况的故障是世界最主要的死亡原因。人工智能的软件工具已经加强了心脏状况评估中的放射学家和心脏病学家,但是他们缺乏透明度是一个问题。如果能够发现深层次网络中不同心脏状况的概念的代表性,那么这个项目就进行调查:左心肠(LV)、右心肠(Right Ventrle)和心肌(MYO),使用解释方法,通过提供定性概念的分数值和关键性能指标,加强分类系统。随着在心脏状况评估中引入需要解释的对心脏状况评估中的放射学家和心脏病学家,但缺乏透明度是一个问题。如果能够从深层次网络中发现对心脏疾病诊断很重要的基本特征,则采用解释方法。在以往的研究中,基数方法用于心脏病的分类,并且为心脏-心脏-心脏-心电算(D-TC)的诊断方法的临床解释性能分析基础。这一方法用于对心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心交解解解解解解解解方法的诊断-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心研究研究研究研究研究研究研究研究

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年10月9日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2020年10月9日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
16+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员