We present an adaptive algorithm with one-sided error for the problem of junta testing for Boolean function under the challenging distribution-free setting, the query complexity of which is $\tilde O(k)/\epsilon$. This improves the upper bound of $\tilde O(k^2)/\epsilon$ by \cite{liu2019distribution}. From the $\Omega(k\log k)$ lower bound for junta testing under the uniform distribution by \cite{sauglam2018near}, our algorithm is nearly optimal. In the standard uniform distribution, the optimal junta testing algorithm is mainly designed by bridging between relevant variables and relevant blocks. At the heart of the analysis is the Efron-Stein orthogonal decomposition. However, it is not clear how to generalize this tool to the general setting. Surprisingly, we find that junta could be tested in a very simple and efficient way even in the distribution-free setting. It is interesting that the analysis does not rely on Fourier tools directly which are commonly used in junta testing. Further, we present a simpler algorithm with the same query complexity.


翻译:对于在具有挑战性的无分配环境下对布林功能进行军政府测试的问题,我们提出了一个具有片面错误的适应性算法,这种算法在具有挑战性的无分配环境下对布利昂功能进行军政府测试的问题,其质询的复杂性是$\tilde O(k)/\\ epsilon$。这改善了美元对O(k)2/\ epsilon$的上层约束, 也就是通过\ cite{liu2019分配} 。 从$\ omega(k\ log k) 美元中, 用于军政府测试的军政府较低部分, 我们的算法几乎是最佳的。 在标准的统一分布中, 最佳的军政府测试算法主要通过相关变量和相关块之间的连接来设计。 在分析的核心是 Efron- Stein 或thogonal decomposition。 但是, 如何将这一工具推广到一般设置。 令人惊讶的是, 我们发现即使在无分配环境下, 军政府测试也可以以非常简单和有效的方式进行测试。 。有趣的是, 分析并不直接依赖在军政府测试中常用的四等工具。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员