The development of Internet of Things (IoT) brings new changes to various fields. Particularly, industrial Internet of Things (IIoT) is promoting a new round of industrial revolution. With more applications of IIoT, privacy protection issues are emerging. Specially, some common algorithms in IIoT technology such as deep models strongly rely on data collection, which leads to the risk of privacy disclosure. Recently, differential privacy has been used to protect user-terminal privacy in IIoT, so it is necessary to make in-depth research on this topic. In this paper, we conduct a comprehensive survey on the opportunities, applications and challenges of differential privacy in IIoT. We firstly review related papers on IIoT and privacy protection, respectively. Then we focus on the metrics of industrial data privacy, and analyze the contradiction between data utilization for deep models and individual privacy protection. Several valuable problems are summarized and new research ideas are put forward. In conclusion, this survey is dedicated to complete comprehensive summary and lay foundation for the follow-up researches on industrial differential privacy.
翻译:发展物联网(IOT)给各个领域带来了新的变化。特别是,工业物因特网(IIOT)正在推动新的一轮工业革命。随着对IIOT的更多应用,隐私保护问题正在出现。特别是,IIOT技术中的一些共同算法,例如深层模型,在很大程度上依赖数据收集,从而导致隐私披露的风险。最近,在IIOT中,使用不同的隐私来保护用户-终身隐私,因此有必要对此专题进行深入研究。在本文件中,我们分别对IIOT和隐私保护的机会、应用和挑战进行了全面调查。我们首先审查了有关IIOT和隐私保护的相关文件。然后,我们侧重于工业数据隐私的衡量标准,分析了为深层模型利用数据与个人隐私保护之间的矛盾。我们总结了几个有价值的问题,提出了新的研究想法。最后,这项调查旨在完成关于工业差异隐私权的全面概述,并为后续研究奠定基础。