Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex label hierarchy. Recently, the pretrained language models (PLM) have been widely adopted in HTC through a fine-tuning paradigm. However, in this paradigm, there exists a huge gap between the classification tasks with sophisticated label hierarchy and the masked language model (MLM) pretraining tasks of PLMs and thus the potentials of PLMs can not be fully tapped. To bridge the gap, in this paper, we propose HPT, a Hierarchy-aware Prompt Tuning method to handle HTC from a multi-label MLM perspective. Specifically, we construct dynamic virtual template and label words which take the form of soft prompts to fuse the label hierarchy knowledge and introduce a zero-bounded multi-label cross entropy loss to harmonize the objectives of HTC and MLM. Extensive experiments show HPT achieves the state-of-the-art performances on 3 popular HTC datasets and is adept at handling the imbalance and low resource situations.
翻译:由于标签等级复杂,等级文本分类是一项具有挑战性的多标签分类子任务。最近,预先培训的语言模式(PLM)通过微调模式在HTC中被广泛采用,然而,在这种模式中,具有精密标签等级的分类任务与隐藏语言模式(MLM)的PLM预培训任务之间存在巨大差距,因此无法充分挖掘PLM的潜力。为了缩小这一差距,我们在本文件中提议采用高分类(HPT),即从多标签MLM角度处理高标签语言模式的高级系统快速调试方法。具体地说,我们建立动态虚拟模板和标签单词,其形式为软提示整合标签等级知识,并引入零限制多标签的跨星位损失,以协调高分类和MLM的目标。 广泛的实验显示HPT在3个流行的HTC数据集上达到最新水平的性能,并在处理不平衡和低资源状况时不适应。