Consider a population of customers each of which needs to decide independently when to arrive to a facility that provides a service during a fixed period of time, say a day. This is a common scenario in many service systems such as a bank, lunch at a cafeteria, music concert, flight check-in and many others. High demand for service at a specific time leads to congestion that comes at a cost, e.g., for waiting, earliness or tardiness. Queueing Theory provides tools for the analysis of the waiting times and associated costs. If customers have the option of deciding when to join the queue, they will face a decision dilemma of when to arrive. The level of congestion one suffers from depends on others behavior and not only that of the individual under consideration. This fact leads customers to make strategic decisions regarding their time of arrival. In addition, multiple decision makers that affect each other's expected congestion, call for non-cooperative game theoretic analysis of this strategic interaction. This common daily scenario has prompted a research stream pioneered by the ?/M/1 model of Glazer and Hassin (GH1983) that first characterized an arrival process to a queue as a Nash equilibrium solution of a game. This survey provides an overview of the main results and developments in the literature on queueing systems with strategic timing of arrivals. Another issue is that of social optimality, namely the strategy profile used by customers that optimizes their aggregate utility. In particular, we review results concerning the price of anarchy (PoA), which is the ratio between the socially optimal and the equilibrium utilities.


翻译:如果客户可以选择何时加入排队,那么他们将面临何时到达的决定困境。 拥堵程度取决于他人的行为,而不仅仅是所考虑的个人的行为。 这一事实导致客户就其抵达时间做出战略决定。 此外,影响彼此预期的拥堵的众多决策者呼吁对这一战略互动进行不合作的游戏理论分析。 这种常见的日常情景促使人们开始研究流,即Glazer和Hassin(GHA)的模型(GH1983年)之间,这是我们当前最优化的市面汇率评估,这是我们当前最优化的市面汇率评估,也是目前最优化的市面汇率评估,也是目前最优化的。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年9月23日
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员