To avoid ineffective collisions between the equilibrium states, the hybrid method with deviational particles (HDP) has been proposed to integrate the Fokker-Planck-Landau system, while leaving a new issue in sampling deviational particles from the high-dimensional source term. In this paper, we present an adaptive sampling (AS) strategy that first adaptively reconstructs a piecewise constant approximation of the source term based on sequential clustering via discrepancy estimation, and then samples deviational particles directly from the resulting adaptive piecewise constant function without rejection. The mixture discrepancy, which can be easily calculated thanks to its explicit analytical expression, is employed as a measure of uniformity instead of the star discrepancy the calculation of which is NP-hard. The resulting method, dubbed the HDP-AS method, runs approximately ten times faster than the HDP method while keeping the same accuracy in the Landau damping, two stream instability, bump on tail and Rosenbluth's test problem.
翻译:暂无翻译