The Internet of Things (IoT) relies heavily on resource-limited devices to communicate critical (e.g., military data) information under low-energy adversarial environments and low-latency wireless channels. Authenticated Encryption (AE) guarantees confidentiality, authenticity, and integrity, making it a vital security service for IoT. However, current deployed (lightweight) AE standards lack essential features like key compromise resiliency and compact authentication tags, as well as performance enhancements such as offline-online cryptography. To address these gaps, we propose Graphene, the first (to our knowledge) symmetric Forward-secure and Aggregate Authenticated Encryption (FAAE) framework designed for the performance and security demands of low-end IoT infrastructures. Graphene innovates by synergizing key evolution strategies and offline-online cryptographic processing with Universal Message Authentication Codes (UMACs) to guarantee breach-resiliency, near-optimal online latency, and compactness. We demonstrate Graphene efficiency through two distinct instantiations, each balancing unique performance trade-offs with extensibility for diverse MACs. Our experimental evaluation on commodity hardware and 32-bit ARM Cortex-M4 microcontroller shows Graphene significant performance gains over existing alternatives. Graphene is also backward compatible with standard-compliant cryptographic implementations. We release our implementation as open source for public testing and adaptation.


翻译:物联网(IoT)高度依赖资源受限设备在低能耗对抗环境和低延迟无线信道中传输关键(例如军事数据)信息。认证加密(AE)可确保机密性、真实性与完整性,是物联网至关重要的安全服务。然而,当前已部署的(轻量级)AE标准缺乏关键特性,如密钥泄露恢复能力和紧凑型认证标签,以及离线-在线密码学等性能增强机制。为弥补这些不足,我们提出了Graphene——据我们所知首个面向低端物联网基础设施性能与安全需求设计的对称前向安全聚合认证加密(FAAE)框架。Graphene通过协同整合密钥演化策略、离线-在线密码处理与通用消息认证码(UMACs),创新性地实现了抗泄露性、近似最优的在线延迟及紧凑性。我们通过两种不同实例化方案展示Graphene的效率,每种方案均以独特性能权衡与对多样化MAC的扩展性取得平衡。在商用硬件和32位ARM Cortex-M4微控制器上的实验评估表明,Graphene相较现有方案具有显著的性能优势。该框架同时向后兼容符合标准的密码实现。我们已将实现代码开源发布,以供公开测试与适配。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员