Longitudinal fetal brain atlas is a powerful tool for understanding and characterizing the complex process of fetus brain development. Existing fetus brain atlases are typically constructed by averaged brain images on discrete time points independently over time. Due to the differences in onto-genetic trends among samples at different time points, the resulting atlases suffer from temporal inconsistency, which may lead to estimating error of the brain developmental characteristic parameters along the timeline. To this end, we proposed a multi-stage deep-learning framework to tackle the time inconsistency issue as a 4D (3D brain volume + 1D age) image data denoising task. Using implicit neural representation, we construct a continuous and noise-free longitudinal fetus brain atlas as a function of the 4D spatial-temporal coordinate. Experimental results on two public fetal brain atlases (CRL and FBA-Chinese atlases) show that the proposed method can significantly improve the atlas temporal consistency while maintaining good fetus brain structure representation. In addition, the continuous longitudinal fetus brain atlases can also be extensively applied to generate finer 4D atlases in both spatial and temporal resolution.
翻译:胎儿大脑图集是理解和描述胎儿大脑发育复杂过程的有力工具。现有的胎儿脑图集通常由独立地在独立时间点独立地独立地在离散时间点上以平均的大脑图象构建。由于不同时间点的样本在上遗传趋势上的差异,因此产生的图集存在时间上的差异,这可能导致在时间线上估计大脑发育特征参数错误。为此,我们提出了一个多阶段深层次学习框架,以解决时间不一致问题,将它作为4D(3D大脑体积+1D年龄)图像解译任务。我们用隐含神经表解,构建一个连续无噪音的长方形脑图集,作为4D空间时空协调的功能。两个公共胎儿大脑图集(CRL和FBA-中国图集)的实验结果显示,拟议的方法可以大大改善图集的时间一致性,同时保持良好的胎儿大脑结构代表性。此外,连续的长方胎脑图集也可以广泛应用于空间和时空分辨率的细微的4D。