Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO$_{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO$_{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.
翻译:心血管呼吸机健身是新陈代谢疾病和死亡率的既定预测。 健身直接测量为最大氧耗氧量( VO$2 ⁇ 2{max$),或使用标准锻炼测试的心率( N=11,059)进行间接评估。 然而,这种测试成本高且负担沉重, 因为它需要专门的设备, 如运动机和氧面具, 限制其效用。 现代磨损记录了动态真实世界数据, 从而可以改善健身预测。 在这项工作中, 我们设计了算法和模型, 将原始可磨损感官数据转换成心血管呼吸机健身估计。 我们验证了这些估计, 利用芬兰研究( N=11,059) 以及其纵向测试群( N=2, 675) 进行间接评估。 使用英国生物银行校验研究( N=181) 的第三个外部组群, 接受了最大VO$%2} 标准体格测试, 可以改善健康。 我们的计算结果显示, 将磨损和其他生物标记作为神经网络的投入, 与可磨损的精度评估结果 与地面事实有很强的对比。 在今天的样本样本中(r= 0.82, 95CI 95CI 和历史测试中, 测试中, 也显示用于 10年的实验室测量测试方法, 测试。