The geometric transportation problem takes as input a set of points $P$ in $d$-dimensional Euclidean space and a supply function $\mu : P \to \mathbb{R}$. The goal is to find a transportation map, a non-negative assignment $\tau : P \times P \to \mathbb{R}_{\ge 0}$ to pairs of points, so the total assignment leaving each point is equal to its supply, i.e., $\sum_{r \in P} \tau(q, r) - \sum_{p \in P} \tau(p, q) = \mu(q)$ for all points $q \in P$. The goal is to minimize the weighted sum of Euclidean distances for the pairs, $\sum_{(p, q) \in P \times P} \tau(p, q) \cdot ||q - p||_2$. We describe the first algorithm for this problem that returns, with high probability, a $(1 + \epsilon)$-approximation to the optimal transportation map in $O(n\, \mathrm{poly}(1 / \epsilon)\, \mathrm{polylog}{n})$ time. In contrast to the previous best algorithms for this problem, our near-linear running time bound is independent of the spread of $P$ and the magnitude of its real-valued supplies.
翻译:几何运输问题作为输入输入, 以美元为单位, 以 美元为单位, 以 Euclidean 空间和供应功能 $\ mu : P\ to \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 美元 。 目标是为所有点寻找一个运输地图, 一个非负性任务 $\ tau : P\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \