A communication network is a graph in which each node has only local information about the graph and nodes communicate by passing messages along its edges. Here, we consider the {\it geometric communication network} where the nodes also occupy points in space and the distance between points is the Euclidean distance. Our goal is to understand the communication cost needed to solve several fundamental geometry problems, including Convex Hull, Diameter, Closest Pair, and approximations of these problems, in the asynchronous CONGEST KT1 model. This extends the 2011 result of Rajsbaum and Urrutia for finding a convex hull of a planar geometric communication network to networks of arbitrary topology.
翻译:通信网络是一个图表,其中每个节点仅拥有有关图形和节点的本地信息,通过沿其边缘传递信息进行通信。 这里, 我们考虑的是 : ⁇ 几何通信网络 : 节点也占据空间点和点之间的距离是 欧几里德距离 。 我们的目标是理解解决几个基本几何问题所需的通信成本, 包括Convex Hull、 Diamter、CONGEST KT1 模型中的CONGEST KT1, 以及这些问题的近似。 这把2011年Rajsbaum 和Urrutia 的结果延伸至 : 寻找一个平面几何通信网络的螺旋体到任意的地形网络 。