Fuzzy rough set theory can be used as a tool for dealing with inconsistent data when there is a gradual notion of indiscernibility between objects. It does this by providing lower and upper approximations of concepts. In classical fuzzy rough sets, the lower and upper approximations are determined using the minimum and maximum operators, respectively. This is undesirable for machine learning applications, since it makes these approximations sensitive to outlying samples. To mitigate this problem, ordered weighted average (OWA) based fuzzy rough sets were introduced. In this paper, we show how the OWA-based approach can be interpreted intuitively in terms of vague quantification, and then generalize it to Choquet-based fuzzy rough sets (CFRS). This generalization maintains desirable theoretical properties, such as duality and monotonicity. Furthermore, it provides more flexibility for machine learning applications. In particular, we show that it enables the seamless integration of outlier detection algorithms, to enhance the robustness of machine learning algorithms based on fuzzy rough sets.
翻译:模糊粗略的设置理论可以作为一种工具,用于处理在物体间不易分辨的渐进概念下出现的数据不一致问题。 它可以通过提供概念的上下近似值来做到这一点。 在传统的模糊粗略套件中, 下下下和上近似值分别使用最小和最大操作员来决定。 这对机器学习应用来说是不可取的, 因为它使这些近近似体对偏差样本敏感。 为了缓解这一问题, 引入了基于以模糊易分的模糊粗略套件的定序加权平均( OWA) 。 在本文中, 我们展示了基于 OWA 方法的直观解释方法, 然后将其概括为基于 Choquet 的模糊粗略套件( CFRS ) 。 这种一般化保持了可取的理论属性, 如双元性和单调性 。 此外, 它为机器学习应用提供了更大的灵活性。 特别是, 我们显示它能够使外部检测算法的无缝合, 以加强基于模糊粗略粗略套件的机器学习算法的稳健。