项目名称: 基于数据的基因网络时标系统建模、动力学及同步控制研究
项目编号: No.61273012
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 邱建龙
作者单位: 临沂大学
项目金额: 60万元
中文摘要: 基因网络是当前系统生物学和自动控制领域的一个前沿热点课题,基于微阵列数据的基因网络建模将进一步揭示网络内在的调控机制,预测未知的系统性态。本项目基于酵母菌的基因表达数据,利用机器学习、数据挖掘、通路分析和参数估计等方法,结合其具有的时-空特征并考虑外部脉冲和反应扩散的影响建立一种全新的时标动力系统模型;运用非线性动力系统分析方法研究其演化动力学特性;利用牵制控制、脉冲控制、间歇控制和自适应控制等控制方法设计有效的同步控制策略并得到加强同步能力和避免有害同步的方法;最后,通过计算机模拟仿真评价所建模型的准确性和所提结论的有效性,并进一步解释其生物背景和实际意义。
中文关键词: 基因网络;复杂网络;动力系统;动力学分析;同步控制
英文摘要: In recent years, genetic regulatory networks has become a hot research topic in the fields of systems biology and automatic control, modeling of genetic networks based on micro-array data could further explore the regulatory schemes and predict the unknow dynamics of the networks. Based on the yeast database, by using machine learning, data mining, pathway analysis and parameter estimation, etc., a new time-scale dynamic model is proposed by combining the space-time characteristics and the influences of external pulses and reaction diffusions. Then, the evolutionary dynamics of the model will be analyzed through nonlinear system theory. By using pinning control, impulse control, intermittent control and adaptive control, etc., several effective synchronization strategies are developed, which could improve the synchronous ability and avoid harmful synchronization. Finally, computer simulation results could evaluate the modeling accuracy and the effectiveness of the proposed reuslts, and further help explain its biological background and practical significance.
英文关键词: Genetic Regulatory Network;Complex Network;Dynamic System;Dynamic Analysis;Synchronization Control