Algorithms, from simple automation to machine learning, have been introduced into judicial contexts to ostensibly increase the consistency and efficiency of legal decision making. In this paper, we describe four types of inconsistencies introduced by risk prediction algorithms. These inconsistencies threaten to violate the principle of treating similar cases similarly and often arise from the need to operationalize legal concepts and human behavior into specific measures that enable the building and evaluation of predictive algorithms. These inconsistencies, however, are likely to be hidden from their end-users: judges, parole officers, lawyers, and other decision-makers. We describe the inconsistencies, their sources, and propose various possible indicators and solutions. We also consider the issue of inconsistencies due to the use of algorithms in light of current trends towards more autonomous algorithms and less human-understandable behavioral big data. We conclude by discussing judges and lawyers' duties of technological ("algorithmic") competence and call for greater alignment between the evaluation of predictive algorithms and corresponding judicial goals.


翻译:从简单的自动化到机器学习,在司法背景中引入了从简单的自动化到机器学习的分类方法,表面上提高了法律决策的一致性和效率。在本文件中,我们描述了风险预测算法带来的四种不一致情况。这些不一致情况有可能违反类似案件处理原则,而且往往产生于将法律概念和人类行为落实到有助于建立和评估预测算法的具体措施中的必要性。但这些不一致情况可能隐藏在终端用户:法官、假释官员、律师和其他决策者的身上。我们描述了不一致情况、其来源,并提出各种可能的指标和解决办法。我们还根据目前走向更自主的算法和不易为人所理解的行为大数据的趋势来考虑由于使用算法而产生的不一致问题。我们最后通过讨论法官和律师在技术(“算法”)能力方面的责任,并呼吁在预测算法的评估与相应的司法目标之间更加一致。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月18日
VIP会员
相关VIP内容
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员