Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and direction of the effect at the individual level. However, this task is statistically challenging and typically requires large amounts of data. Investigators may be interested in using the individual patient data (IPD) from multiple studies to estimate these treatment effect models. Our data arise from a systematic review of observational studies contrasting different treatments for multidrug-resistant tuberculosis (MDR-TB), where multiple antimicrobial agents are taken concurrently to cure the infection. We propose a marginal structural model (MSM) for effect modification by different patient characteristics and co-medications in a meta-analysis of observational IPD. We develop, evaluate, and apply a targeted maximum likelihood estimator (TMLE) for the doubly robust estimation of the parameters of the proposed MSM in this context. In particular, we allow for differential availability of treatments across studies, measured confounding within and across studies, and random effects by study.


翻译:当治疗的效果因病人特点的不同而不同,不同程度的治疗效果不同时,就会发生效果改变。当治疗的效果因个人而异时,通过确定病人的共变体来估计个人影响的规模和方向,可以改进精准药物。然而,这项任务在统计上具有挑战性,通常需要大量的数据。调查员可能有兴趣利用来自多种研究的个别病人数据(IPD)来估计这些治疗效果模型。我们的数据来自对对比多种抗药性结核病(MDR-TB)不同治疗的观察研究的系统审查,这种研究同时采用多种抗微生物剂来治愈感染。我们提出了一个边际结构模型(MSM),供不同的病人特点和共同进行效果改变,并在观察性IDP的元分析中进行效果改变。我们开发、评估和应用一个有针对性的最大可能性估计器(TMLE),以便在这方面对提议的MSM的参数进行加倍有力的估计。我们特别允许在各种研究、内部和跨研究中测量的混凝和随机效果之间提供不同的治疗。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
12+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
12+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员