The underlying physics of astronomical systems governs the relation between their measurable properties. Consequently, quantifying the statistical relationships between system-level observable properties of a population offers insights into the astrophysical drivers of that class of systems. While purely linear models capture behavior over a limited range of system scale, the fact that astrophysics is ultimately scale-dependent implies the need for a more flexible approach to describing population statistics over a wide dynamic range. For such applications, we introduce and implement a class of Kernel-Localized Linear Regression (KLLR) models. KLLR is a natural extension to the commonly-used linear models that allows the parameters of the linear model -- normalization, slope, and covariance matrix -- to be scale-dependent. KLLR performs inference in two steps: (1) it estimates the mean relation between a set of independent variables and a dependent variable and; (2) it estimates the conditional covariance of the dependent variables given a set of independent variables. We demonstrate the model's performance in a simulated setting and showcase an application of the proposed model in analyzing the baryonic content of dark matter halos. As a part of this work, we publicly release a Python implementation of the KLLR method.
翻译:天文学系统的基本物理学管辖其可测量特性之间的关系。 因此,量化一个人口在系统一级可观测特性之间的统计关系,可以洞察到该类系统的天体物理驱动因素。 虽然纯线性模型捕捉到系统规模范围有限的行为,但天体物理学最终取决于天体物理学这一事实意味着需要更灵活的方法来描述广泛的动态范围的人口统计。对于这些应用,我们引入并采用一类内核-局部线性递增模型。KLLR是常用线性模型的自然延伸,使线性模型的参数 -- -- 正常化、斜度和共变矩阵 -- -- 取决于规模。KLLR用两个步骤进行推断:(1)它估计一组独立变量和依附变量之间的平均值关系;(2)它估计根据一组独立变量对依赖变量的有条件共变数。我们在模拟设置中展示了模型的性,并展示了在分析深重物质内涵内容方面拟议模型的应用情况。作为这项工作的一部分,我们公开释放了一种PLR方法。