The underlying physics of astronomical systems governs the relation between their measurable properties. Consequently, quantifying the statistical relationships between system-level observable properties of a population offers insights into the astrophysical drivers of that class of systems. While purely linear models capture behavior over a limited range of system scale, the fact that astrophysics is ultimately scale-dependent implies the need for a more flexible approach to describing population statistics over a wide dynamic range. For such applications, we introduce and implement a class of Kernel-Localized Linear Regression (KLLR) models. KLLR is a natural extension to the commonly-used linear models that allows the parameters of the linear model -- normalization, slope, and covariance matrix -- to be scale-dependent. KLLR performs inference in two steps: (1) it estimates the mean relation between a set of independent variables and a dependent variable and; (2) it estimates the conditional covariance of the dependent variables given a set of independent variables. We demonstrate the model's performance in a simulated setting and showcase an application of the proposed model in analyzing the baryonic content of dark matter halos. As a part of this work, we publicly release a Python implementation of the KLLR method.


翻译:天文学系统的基本物理学管辖其可测量特性之间的关系。 因此,量化一个人口在系统一级可观测特性之间的统计关系,可以洞察到该类系统的天体物理驱动因素。 虽然纯线性模型捕捉到系统规模范围有限的行为,但天体物理学最终取决于天体物理学这一事实意味着需要更灵活的方法来描述广泛的动态范围的人口统计。对于这些应用,我们引入并采用一类内核-局部线性递增模型。KLLR是常用线性模型的自然延伸,使线性模型的参数 -- -- 正常化、斜度和共变矩阵 -- -- 取决于规模。KLLR用两个步骤进行推断:(1)它估计一组独立变量和依附变量之间的平均值关系;(2)它估计根据一组独立变量对依赖变量的有条件共变数。我们在模拟设置中展示了模型的性,并展示了在分析深重物质内涵内容方面拟议模型的应用情况。作为这项工作的一部分,我们公开释放了一种PLR方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月10日
Topologically penalized regression on manifolds
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员