This paper introduces an interpretable contextual bandit algorithm using Tsetlin Machines, which solves complex pattern recognition tasks using propositional logic. The proposed bandit learning algorithm relies on straightforward bit manipulation, thus simplifying computation and interpretation. We then present a mechanism for performing Thompson sampling with Tsetlin Machine, given its non-parametric nature. Our empirical analysis shows that Tsetlin Machine as a base contextual bandit learner outperforms other popular base learners on eight out of nine datasets. We further analyze the interpretability of our learner, investigating how arms are selected based on propositional expressions that model the context.
翻译:本文介绍了一种使用Tsetlin Machines(Tsetlin Machines)进行解释性背景强盗算法,该算法用假设逻辑解决复杂的模式识别任务。拟议的强盗学习算法依靠直接的比特操作,从而简化计算和解释。我们随后提出了一个机制,用于利用Tsetlin Machine(Tsetlin Mach)进行汤普森抽样,因为其非参数性质。我们的经验分析表明,Tsetlin Machine(Tsetlin Machine)作为基本背景强盗学习者,在9个数据集中的8个中优于其他受欢迎的学习者。我们进一步分析了我们学习者的解释性,调查如何根据模拟背景的假设表达方式选择武器。