We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical Gaussian autoregressive processes of order 2 having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.
翻译:我们证明,超级临界高斯自动递减进程2的自动递减参数的最小正方位估计值的趋同性混合了具有不同绝对值的真正特征根基的超临界高斯自动递减进程2。我们使用了适当的随机比例,这样,极限分布就是一种二维正常分布,集中在由具有较大绝对值的特性根决定的一维射线上。