Deep learning-based modeling of dynamical systems driven by partial differential equations (PDEs) has become quite popular in recent years. However, most of the existing deep learning-based methods either assume strong physics prior, or depend on specific initial and boundary conditions, or require data in dense regular grid making them inapt for modeling unknown PDEs from sparsely-observed data. This paper presents a deep learning-based collocation method for modeling dynamical systems driven by unknown PDEs when data sites are sparsely distributed. The proposed method is spatial dimension-independent, geometrically flexible, learns from sparsely-available data and the learned model does not depend on any specific initial and boundary conditions. We demonstrate our method in the forecasting task for two-dimensional wave equation and Burgers-Fisher equation in multiple geometries with different boundary conditions.
翻译:近年来,由部分差异方程式驱动的动态系统深层次学习模型已变得相当流行,但是,大多数现有的深层学习方法要么在早期和边界条件之前假定强物理,要么取决于具体的初始和边界条件,或者需要密集的常规电网数据,使其无法从稀少观测的数据中模拟未知的PDE数据。本文介绍了在数据点分布稀少时由未知的PDE驱动的动态系统模型的深层次学习共用合用方法。拟议的方法是空间维度独立、几何式灵活,从稀少的数据中学习,而学习的模式并不取决于任何具体的初始和边界条件。我们展示了在具有不同边界条件的多个不同地形的二维波方程式和Burgerers-Fisher等式预报任务中的方法。