In this paper, we provide a systematic approach for assessing and comparing the computational complexity of neural network layers in digital signal processing. We provide and link four software-to-hardware complexity measures, defining how the different complexity metrics relate to the layers' hyper-parameters. This paper explains how to compute these four metrics for feed-forward and recurrent layers, and defines in which case we ought to use a particular metric depending on whether we characterize a more soft- or hardware-oriented application. One of the four metrics, called `the number of additions and bit shifts (NABS)', is newly introduced for heterogeneous quantization. NABS characterizes the impact of not only the bitwidth used in the operation but also the type of quantization used in the arithmetical operations. We intend this work to serve as a baseline for the different levels (purposes) of complexity estimation related to the neural networks' application in real-time digital signal processing, aiming at unifying the computational complexity estimation.
翻译:在本文中,我们为评估和比较数字信号处理中神经网络层的计算复杂性提供了一种系统的方法。我们提供和连接了四种软件到硬件的复杂度量,界定了不同复杂度量与层的超参数之间的关系。本文解释了如何计算进料前和复数层的这四种度量,并界定了在何种情况下我们应该使用一种特定度量,这取决于我们是否具有更软或硬件导向的应用特征。这四个度量中有一个称为“添加数和位移数(NABS)”,是新引入的多元度量。NABS不仅描述了操作中使用的位宽,而且还描述了计算操作中使用的量化类型。我们打算将这项工作作为实时数字信号处理中与神经网络应用有关的复杂度估计的不同级别(目的)的基准,目的是统一计算复杂性估计。