Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.
翻译:通过使用自然语言处理方法的日常进度说明自动总结病人的主要问题有助于对抗医院环境中的信息和认知过量,并有可能协助提供计算机化诊断决定支持的提供者。问题列表总和需要一个理解、抽象和生成临床文件的模式。在这项工作中,我们提出一个新的国家医疗计划任务,目的是利用住院期间提供者进度说明的投入,在患者日常护理计划中产生一系列问题。我们调查T5和BART、两个最先进的后继2eq变压器结构在解决这一问题方面的性能。我们提供了一套基于公共可得到的电子健康记录说明之上的文具。我们提供了在医疗强化护理(MIMIMIC)-III医疗信息网(MMIMIC-III)中公开提供的电子健康记录进展说明的文具。T5和BART接受一般域文本培训,我们试验了一种数据增强方法和区域适应前培训方法,以增加医疗词汇和知识的接触。评价方法包括ROUGE、BERTScore、刑罚嵌入的精度相似性变式和医学概念上的F。结果显示,具有区域适应性前语言模式的T5和训练前方向,表明解决规则问题的重要领域任务。