This paper concerns about the radio propagation models used for the upcoming 4th Generation (4G) of cellular networks known as Long Term Evolution (LTE). The radio wave propagation model or path loss model plays a very significant role in planning of any wireless communication systems. In this paper, a comparison is made between different proposed radio propagation models that would be used for LTE, like Stanford University Interim (SUI) model, Okumura model, Hata COST 231 model, COST Walfisch-Ikegami & Ericsson 9999 model. The comparison is made using different terrains e.g. urban, suburban and rural area.SUI model shows the lowest path lost in all the terrains while COST 231 Hata model illustrates highest path loss in urban area and COST Walfisch-Ikegami model has highest path loss for suburban and rural environments.


翻译:本文对今后第四代(4G)称为长期演变(LTE)的移动电话网络所使用的无线电传播模型表示关切。无线电波传播模型或路径丢失模型在规划无线通信系统方面起着非常重要的作用。本文比较了拟用于无线通信系统的不同无线电传播模型,如斯坦福大学临时(SIU)模型、Okumura模型、Hata COST 231模型、COST Walfisch-Ikegami和Ericsson 99999模型。比较采用不同的地形,如城市、郊区和农村地区。SUI模型显示了所有地形中损失的最低路径,COST 231 Hata模型显示了城市地区的最大路径损失,COST Walfissch-Ikegami模型显示郊区和农村环境的最大路径损失。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员