We present AutoOED, an Optimal Experiment Design platform powered with automated machine learning to accelerate the discovery of optimal solutions. The platform solves multi-objective optimization problems in time- and data-efficient manner by automatically guiding the design of experiments to be evaluated. To automate the optimization process, we implement several multi-objective Bayesian optimization algorithms with state-of-the-art performance. AutoOED is open-source and written in Python. The codebase is modular, facilitating extensions and tailoring the code, serving as a testbed for machine learning researchers to easily develop and evaluate their own multi-objective Bayesian optimization algorithms. An intuitive graphical user interface (GUI) is provided to visualize and guide the experiments for users with little or no experience with coding, machine learning, or optimization. Furthermore, a distributed system is integrated to enable parallelized experimental evaluations by independent workers in remote locations. The platform is available at https://autooed.org.
翻译:我们展示了AutoOED,这是一个优化实验设计平台,其动力是自动机器学习,加速发现最佳解决方案。该平台通过自动指导要评估的实验设计,以时间和数据高效的方式解决多目标优化问题。为了实现优化进程自动化,我们实施了几项具有最新技术性能的多目标巴伊西亚优化算法。AutoED是开放源代码,在Python中写成。代码库是模块,为扩展和定制代码提供了便利,作为机器学习研究人员的测试台,便于开发和评价自己的多目标巴伊西亚优化算法。一个直观的图形用户界面(GUI)为在编码、机器学习或优化方面经验很少或没有经验的用户提供可视化和指导的实验。此外,一个分布式系统被整合,使偏远地区的独立工人能够进行平行的实验评估。该平台可在 https://autooed.org 上查阅。