Bayesian neural networks are theoretically well-understood only in the infinite-width limit, where Gaussian priors over network weights yield Gaussian priors over network outputs. Recent work has suggested that finite Bayesian networks may outperform their infinite counterparts, but their non-Gaussian output priors have been characterized only though perturbative approaches. Here, we derive exact solutions for the output priors for individual input examples of a class of finite fully-connected feedforward Bayesian neural networks. For deep linear networks, the prior has a simple expression in terms of the Meijer $G$-function. The prior of a finite ReLU network is a mixture of the priors of linear networks of smaller widths, corresponding to different numbers of active units in each layer. Our results unify previous descriptions of finite network priors in terms of their tail decay and large-width behavior.
翻译:巴伊西亚神经网络在理论上只有无限宽度限制才被充分理解, 高萨对网络重量的先期研究可以产生高萨对网络输出的先期研究。 最近的工作表明, 有限的巴伊西亚网络可能优于其无限的对等网络, 但是它们的非加西输出前期研究只是通过扰动性的方法才被定性。 在这里, 我们为一定的完全连通的巴伊西亚神经网络的单个输入前期实例得出精确的解决方案。 对于深线性网络来说, 前一网络以Meijer $G$的功能为简单表达。 前一个有限的雷卢网络是较小宽度线性网络前期网络的混合体, 对应每个层不同数量的活动单位。 我们的结果统一了以前对有限网络前期的描述, 其尾部腐烂和大宽度行为。